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A NEW METHOD OF THE CALCULATION
OF THE TWO-NEUTRINO DOUBLE

BETA DECAY AMPLITUDES

F.Simkovic *

A new method is proposed of the calculation of the two-neutrino
double-beta decay amplitude, which does not use the spectrum of
intermediate nuclear states. The method is based on evaluation of a
series of commutators of the nuclear Hamiltonian and weak nuclear
hadron current. As a result, two-neutrino double-beta decay ampli-
tude with a nuclear matrix element of a simple form of the two-nuc-
leon operator has been obtained.

The investigation has been performed at the Laboratory of Theo-
retical Physics, JINR.

HoBelit MeTO BEIYHCIIEHHA aMIUTUTY OB
IBYXHEATPHUHHOTO ABOIHOro 6era-pacnana

¢.lllnmxoBuL,

IIpeuioxkeH HOBBIA MeTO[, BHIMMCIICHHA CKOPOCTH ABYXHEATPHHHO-
ro gBoiHoro Gera-pacnafa, OCHOBAHHbIA Ha KOMMYTAllMOHHBIX COOT-
HOUIEHMAX AAEPHOr0 TaMHNbTOHMaHa M CJIaGBIX ANEPHBIX aPOHHBIX
TOKOB. MeToll He TpeGyeT MOCTPOEHMA CIEKTpa ~NMPOMEXYTOUHOro’
Agpa. IlonydeHO 3aMKHyTOe BBIp@KEHMEe VI aMIUMTYObI HaHHOTO
mpoecca.

Pa6ota BhimonteHa B JaGopatopuu reoperuueckoit du3uxku OUSH.

Introduction
Recent first experimental observation of the two-neutrino mode
of the double beta decay of 823¢/1/ has revived interest in this pro-

cess both among theoreticians and experimentalists.
The two-neutrino emitting mode of the double beta decay (2v2 B).

(A,Z) (A, Z+2) +2¢” + 27, : (1)
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occurs as a second-order weak interaction process within the standard
model of electroweak interactions.

In the calculations of the (2v28) decay rate the two-nucleon
mechanism is considered most frequently /2= 4/.

The modern method of the calculations of the (2v28) ampli-
tude as used recently requires the construction of the spectrum of
intermediatenuclear states /2=4/

The early calculations by the closure approximation method
have systematically overestimated the (2+28) amplitude/ 2=4/ The re-
cent progress in calculations of the (2v28) amplitude has been achie-
ved by using quasiparticle random-phase approximation method /5-8/
which leads to a strong suppression of the (2+28) nuclear matrix ele-
ments. However, the value of the nuclear matrix element is very sen-
sitive to the particle-particle interaction in the spin-isospin polarisa-
tion force.

This substantial sensitivity to the details of the nuclear model
used in the construction of intermediate nuclear states showed the
importance of the elaboration of alternative methods of the calcula-
tions of the (2v28)amplitude.

Recently, C.R.Ching and T.H.Ho’% have proposed an alterna-
tive method for the calculations of the (2+28) amplitude in which the
sum over the intermediate nuclear states has been transformed into
a series of commutators of two axial vector currents and the nuclear
Hamiltonian.

In this article, we present another method which is also based
on calculations of commutators of the nuclear Hamiltonian and weak
nuclear currents. Performing summation of a series of commutators
explicitly, we were able to derive the (21 28) nuclear metrix element
in a simple form of the two-nucleon operator for a given nuclear Ha-
miltonian.

The derivation of the (2v28) amplitude

We assume that the beta decay Hamiltonian has the form

G
\/2

KA.

2(eLy VeL )ja+h.c., (2)

where j, is the strangeness conserving charged hadron current and
e and v,y are operators of the left components of fields of the elect-
ron and neutrino, respectively.
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B
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x<py | T(I (%) Ig(x,)) [p; >dx dx,

Here, P, and P, (k ! and k,) are four-momenta of the electrons (anti-
neutrinos), p; and p, are four momenta of the initial and final nucle-
us, and J, (x) is the weak charged nuclear current in the Heisenberg

representation.
If we use the definition of time-order product of two operators

in the form

T (Ja (xl) Jﬁ(xz)) = Ja(xl) JB(X2) +6(320—X1°) [ JB(x2)'Ja(xl)]' (5)
we obtain ’
JaB =2 2178(Et—En+p10+k10) 28 (E  -E, +pyq+kyg) x

n

. 4 g - .4 - -5
—i(pytky)-xy —i(py+ky) - xg
x [e e x

x <P, |J (Ox)]p ><,j (o0, x )|p >dx dx + (6)

+2n8(Ey —E; +py, +k‘1“0 +Pgp + Kgg) x
- - - . -» - -»> .
—1(p1 +k1)~x1> -1(pz+k2)-x2 L 1(p20+k20)t
e fe x

x fe
0

x <p, |l JB(t,?:g)  1,(0,% )] |p, >xdtd dax,

Here, |p, > is an eigenvector of an intermediate nucleus with energy
E,, and E; and E, are energies of the initial and final nucleus, respec-

tively.
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We can see that the first term in the r.h.s. of eq. (6) corresponds
to two subsequent nuclear beta decay processes. However, in the case
of the double beta decay, the beta transition from the parent nucleus
(A,Z)to the intermediate nucleus (A,Z +1) is forbidden energeti-
cally (E, >E;) whichimplies that the first term in the r.h.s. of eq. (6)
is equal to zero. So, only the second term in eq. (6) with the non-equal-
time commutator of the nuclear hadron currents contributes to the
(2v28) amplitude.

Next, if we consider the non-relativistic impulse approximation
for the hadronic currents,

Ja (0.%) =3 7(8,, +i8,8,, (,),) 8(i-% ), (7

limit the consideration only to S4,9 Wave states of the emitted elect-
rons and antineutrinos and the most energetically favoured 0" - 0%
nuclear transition, then for % B We can write,

JaB =2rr8(Et ~E; + Py +k10 +Pgg +Kgg) x

© qi(p__ +k_. )t i —j ‘
x e BT g 8 g,<m, (0110 VO EVO)1Ip (07) > 4

0

1.2 + iHt —iHt +
——é-gASakBBk<pr ()l e Ae(O)e 'AQ(O)”pi(O )>1de

with
V(0) =>r:1 e : 9)
Ay (0) -3 MCH (10)

where H is the nuclear Hamiltonian. If we use, instead of eq. (5), the

fully equivalent formula for the time-ordered product of two operators,
(11)

(% (x) Ig(x,)) =T g(x) T, (x) +8(x,0 -x )T, (x ) Tg(x,)],

we obtain the same formula for JaB as in eq. (8) but with Py +k20 to

be replaced by Pot k-
From the equivalence of both the ways of calculation it follows

that in the framework of our approximations I, B does not depend
on the kunematical variables and we can set
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Pio +k10=p20+k20="’1'§—'L=A’ (12)
in eq. (8). The traditional way for the calculation of the (2v28)ampli-
tude is to insert the complete set of intermediate nuclear states into the
nuclear matrix elements in eq. (8). '

Instead, we proceed as follows. We assume the following form of
the nuclear Hamiltonian

H=Hy +V_, | (13)

where H, is the Hamiltonian of A free nucleons, and Vs is the effec-
tive nucleon-nucleon strong interaction

Vg =V + Vg + Vg +Vy, (14)
where
1
Vw="§ IEJ gw(rij ) ’ (15)
i
= 16
A 2i§]g3(ij)1>a, (16)
1
= — 17
VH 2 if] gH(ru )Pr ' (17)
1
= = 18
=g 2 )BT (18)
with
1 > -
1:’U=—2-(1+ai -oj). 19)
B =g (147, -7), (20)

where g, (r,. ), g5(r;. ), gH(ri. ) and gM(l'i.1 ) are scalar functions
of the relative coordinate r.. of two nucleons (i,j)/10/.

The tensor force, spin-orbit interaction and other nonlocal forces
as well as the Coulomb interaction are neglected since their contribu-
tions are much smaller than those of Ve, Vy and V.
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The nuclear matrix element with axial current is
+ \. iHt —-iHt +
M,,=<p, (6")|[e Ay(0) e Ay (0)]]p, (07) > . (21)
If we take into aécount that
and if we suppose that the main contribution to the nuclear matrix

element gives the two-nucleon operators and neglect the contribution
of the three- and' more-nucleon operators, we obtain

+ 1 iGnmt d "ic‘nmt' - +
M, a=<p, (0 )]_é-nfm (e (A )e (A 1ip (07)>(23)
where
Onm =85 (1) Py + 8, (r ) P wgy(r )P P, , (29
A =m0y +1oa | (25)

The two-nucleon operator of the nuclear matrix element in eé. (23)
can be simplified in the following way. We haye

-iG t

iGamt & nm
e TImTA e = (26)
igMPo Pr t igHPr t igBPa t --igBPcr t —igHP, t -igMPa Prt
=e e e Anme € e .
Where, Ev=Bu(tnp) » By =8y (fy;), Bp=8p(fyy), and we can
write/11/that :
ig P t —-ig P t i- 1)k k
'gB.U I gB 4 ot ( gB) —A——, . )
e A e = [F, ...[F, A 1...1.  (27)

k=0 !

It is easy to see that using P® -1 we can sum up the series of commuta-
tors in eq. (27) and obtain
iggP t | ~iggP t

1,2 -
am © =?{Anm +PaAnmPa +
+ cos(2gBt)(Anm -P Anm P )+ . (28)

=y

visin(2g )[R K 1.
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Proceeding similarly for the Heisenberg force &y(r ) and for the
Majorana force By (rnm) is eq. (26) and then inserting the result into
eq. (23) and_ calculating the commutator in eq. (23) with the use of
the form of A in eq. (25), we obtain

M, =6i<p, 0" 3 oy isin (8, - ) t) N+

- o . (29)
+-§mn(2(gH+gB)t) I, llpi (0 )>,
where
n°-La-p), (30)
s 9 o
n7-Laen,), (3D

are projection operators which project onto the singlet (5) and trip-
let (t) parts of the nuclear two-body wave function.
Analogously, we get

M, =<p, ()™ V@ e ™ v@)llp (07)>=0. (32)

By inserting eqgs. (29) and (32) into eq. (8) and then into eq. (3)
and performing theintegration over time variable using the standard
procedure of adiabatic switching-off the interaction at t-o |

f gt sin (bt)dt=> lim ['ei(a““t sin (bt)dt= lim b —, {(33)
0 €e->0 0 e»0 b -3 -ir
we obtain the (2v28) amplitude in the form
G, 2
<18@ Jisoi(—=Ey 1 1 <

2 em®  v1 K &
\/ ( ”) \/ 6p10p20 10 20

x 1u(py) y, (Ly Y u(k ) -u(p,)y, (Ty ) u(k ) ~(ky 2 k,) Ix(34)

xgiMbQBf?na(Ef—Ei +p10+k ),

0 *Pgg +Egg
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where

2v2f + + o+, o 1 & o +
M =<pr(0 )lnimfnrm(f(rnm) Ds+-§-f (rnm)l]t)lpi(o )>, (35)
with
N g (r ) tg (r )
t¥(r, )= lim S ML L : (36)
> 2 2
O (e ) te () (B ke

Discussion and conclusion

We have derived a new formula of the (21 28) amplitude (eq.(34))
with the (2v28) nuclear matrix element in which the summation of a
series of commutators of the nuclear Hamiltonian and weak nuclear
currents has been performed and a simple form of two-nucleon tran-
- . sition operator has been found.

The two-nucleon operator of the (2v28) nuclear matrix element
in eq. (35) in the framework of our approximations depends only on
the Bartlett and Heisenberg forces and has a pole structure in their
radial dependence (eq. (36)).

We note that if in the L-S coupling we consider only the confi-
guration L=0, S = 0 in the ground states of even-even nuclei and neg-
lect the L =1 S=1 configuration, becasue of a short range of pairing
forces 9/, and choose the Bartlett and Heisenberg forces to be equal,
we obtain that the (2,28) amplitude is equal to zero, which is in ag-
reement with the conclusions of C.R.Ching and T.H.Ho 9/

In conclusion, we add that the same method can be applied to
the calculations of other nuclear processes such as the neutrinoless
double-beta decay and nuclear pion double charge exchange.
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Note: After the present research has been completed, we have
seen the paper by C.R.Ching, T.H.Ho and X.R.Wu’L2/ The result ob-
tained by those authors in a completely different way fully supports
our result. It is, however, not clear from the text whether the pole
structure present in eq. (36) has been noticed in Ref.” 12/ .
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